ANALISIS MATEMATIKA PADA PENYEBARAN VIRUS NIPAH (NiV) DENGAN MENGGUNAKAN KENDALI OPTIMAL METODE Pontryagin Maximum Principle (PMP)
DOI:
https://doi.org/10.31004/koloni.v2i1.440Abstract
Nipah virus (NiV) is a virus that can be transmitted. This journal discusses the use of optimal control strategies to minimize populations or individuals infected with the NiV virus. We developed a mathematical model for the spread of Nipah vision (NiV) with two control strategies, namely community awareness and treatment. The aim of this study is to minimize the number of infected individuals and to reduce the costs required to create awareness and treatment at set time intervals. To achieve this goal the authors use the Pontryagin Maximum Principle (PMP) method. To see the effectiveness of using the optimal control strategy, the authors use the Runge Kutta Order 4 method (RK 4: Forward & Backward). The results of the simulation show that using two controls (public awareness and treatment) can optimally reduce the number of individuals infected with Nipah virus (NiV).
Keywords: Optimal Control, Infectious Diseases, Nipah Virus, PMP, Runge Kutta Order 4
References
Chong, H.T., Hossain, M.J. and Tan, C.T. (2008). Differences in Epidemiologic and Clinical Features of Nipah Virus Encephalitis between the Malaysian and Bangladesh Outbreaks. Neurology Asia, 13, 23-26.
Dwi Annisa. (2022). “Penyakit Virus Nipah’, diakses di: Infeksi Emerging Kementerian Kesehatan RI (kemkes.go.id)
Eihab B.M. Bashier, dan Kailash C. Patidar. (2017). Optimal control of an epidemiological model with multiple time delays, Applied Mathematics and Computation 292 (2017) 47–56, Contents lists available atScienceDirect.
Indrawati Sendow dan R.M. Abdul Adjid. (2005). Penyakit Nipah dan Situasinya Di Indonesia, Balai Penelitian Veteriner, Bogor, WARTAZOA Vol. 15 No. 2
National Guideline for Management. (2011). Prevention and Control of Nipah Virus Infection including Encephalitis, Directorate General of Health Services. Ministry of Health and Family Welfare, Government of the Peoples Republic of Bangladesh.
Nur Ilmayasita., Annisa & Erra. (2022). Model Matematika Penyebaran Virus Nipah (NiV) Dengan Kontrol Optimal Menggunakan Metode Pontryagin Maximum Principle (PMP). Vol 14 No 1. Jurnal Ilmiah Matematika dan Pendidikan Matematika
Pontryagin, L.S., Boltyanskii, V.G., Gamkrelize, R.V. and Mishchenko,E.F. (1962). The Mathematical Theory of Optimal Processes. New York, Wiley.
Subiono. (2013). Sistem Linear dan Kontrol Optimal. Version 2.2.1, Institut Teknologi Sepuluh Nopember, Surabaya.
Wang, L .F et all. (2000). The Exceptionally Large Genome Of Hendra virus : Support for creation of a new genus within the family Paramyxoviridae. J. Virology 74(21) : 9972-9979.
World Health Organization. (2008). WHO Report, Asia-Pacific Region Nipah Virus Infections.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sitti Rosnafi’an Sumardi, Cecilia Bintang Girik Allo, Winda Ade Fitriya B, Nicea Roona Paranoan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.